How do you prove #\frac { \cos a } { 1- \sin a } = \sec a + \tan a#?
2 Answers
Use
#(cosa)/(1 - sina) = 1/cosa + sina/cosa#
#cosa/(1 - sina) = (1 + sina)/cosa#
Multiply both sides by
#cosa/(1 - sina)cosa = (1 + sina)/cosa (cosa)#
#cos^2a/(1 - sina) = 1 + sina#
Now apply
#(1 - sin^2a)/(1 - sina) = 1 + sina#
#((1 + sina)(1 - sina))/(1 - sina) = 1 + sina#
#1 + sina = 1 + sina#
Since both sides are obviously equal, we've proved this identity.
Hopefully this helps!
see explanation.
Explanation:
Rearrange the left side or the right side until it is equivalent to the other side.
#"left side "=cosalpha/(1-sinalpha)#
#"multiply numerator/denominator by " 1+sinalpha"#
#color(white)(left side)=cosalpha/(1-sinalpha)xx(1+sinalpha)/(1+sinalpha)#
#color(white)(left side)=(cosalpha+cosalphasinalpha)/(1-sin^2alpha)#
#[• cos^2alpha+sin^2alpha=1to1-sin^2alpha=cos^2alpha]#
#color(white)(left side)=cosalpha/(cos^2alpha)+(cosalphasinalpha)/(cos^2alpha)#
#color(white)(left side)=1/cosalpha+sinalpha/cosalpha#
#color(white)(left side)=secalpha+tanalpha=" right side"to" verified"#