How do you prove #\frac { \cos a } { 1- \sin a } = \sec a + \tan a#?

2 Answers
Apr 12, 2017

Use #secx = 1/cosx# and #tanx = sinx/cosx#.

#(cosa)/(1 - sina) = 1/cosa + sina/cosa#

#cosa/(1 - sina) = (1 + sina)/cosa#

Multiply both sides by #cosa#.

#cosa/(1 - sina)cosa = (1 + sina)/cosa (cosa)#

#cos^2a/(1 - sina) = 1 + sina#

Now apply #sin^2x+ cos^2x = 1#.

#(1 - sin^2a)/(1 - sina) = 1 + sina#

#((1 + sina)(1 - sina))/(1 - sina) = 1 + sina#

#1 + sina = 1 + sina#

Since both sides are obviously equal, we've proved this identity.

Hopefully this helps!

Apr 12, 2017

see explanation.

Explanation:

Rearrange the left side or the right side until it is equivalent to the other side.

#"left side "=cosalpha/(1-sinalpha)#

#"multiply numerator/denominator by " 1+sinalpha"#

#color(white)(left side)=cosalpha/(1-sinalpha)xx(1+sinalpha)/(1+sinalpha)#

#color(white)(left side)=(cosalpha+cosalphasinalpha)/(1-sin^2alpha)#

#[• cos^2alpha+sin^2alpha=1to1-sin^2alpha=cos^2alpha]#

#color(white)(left side)=cosalpha/(cos^2alpha)+(cosalphasinalpha)/(cos^2alpha)#

#color(white)(left side)=1/cosalpha+sinalpha/cosalpha#

#color(white)(left side)=secalpha+tanalpha=" right side"to" verified"#