How do you solve #4x ^ { 2} - 9x + 10= 0#?

1 Answer
Apr 13, 2017

Use the quadratic formula. The process is shown in the explanation below.

#x=(9+sqrt(79)i)/8#, #(9-sqrt(79)i)/8#

Explanation:

Solve:

#4x^2-9x+10=0# is a quadratic equation in the form #ax^2+bx+c=0#,
where #a=4#, #b=-9#, #c=10#.

Use the quadratic formula to solve this equation.

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Substitute the known values into the formula.

#x=(-(-9)+-sqrt((-9)^2-4*4*10))/(2*4)#

Simplify.

#x=(9+-(sqrt(81-160)))/8#

Solutions

#x=(9+sqrt(79)i)/8#, #(9-sqrt(79)i)/8#