Question #48c60
2 Answers
Explanation:
differentiate using the
#color(blue)"quotient rule"#
#"Given " f(x)=(g(x))/(h(x))" then"#
#• f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2#
#color(orange)"Reminder" d/dx(tanx)=sec^2x#
#"here " g(x)=1-tanxrArrg'(x)=-sec^2x#
#"and " h(x)=1+tanxrArrh'(x)=sec^2x#
#rArrf'(x)=((1+tanx)(-sec^2x)-(1-tanx)(sec^2x))/(1+tanx)^2#
#color(white)(rArrf'(x))=(-sec^2xcancel(-sec^2xtanx)-sec^2xcancel(+sec^2xtanx))/(1+tanx)^2#
#color(white)(rArrf'(x))=-(2sec^2x)/(1+tanx)^2#
or,
Explanation:
Observe that,
Hence,
Enjot Maths.!