What is #lim_(xrarr1) (x^2-1)/(x^3-1)#?

1 Answer
Apr 13, 2017

#lim_(xrarr1)(x^2-1)/(x^3-1)=color(red)(2/3)#

Explanation:

Factoring identities you should know:
#color(white)("XXX")color(blue)((a^2-b^2)=(a-b)(a+b))#
#color(white)("XXX")color(green)((a^3-b^3)=(a-b)(a^2+ab+b^2))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#lim_(xrarr1)(color(blue)(x^2-1))/(color(green)(x^3-1))#

#color(white)("XXX")=lim_(xrarr1)(color(blue)(cancel((x-1))(x+1)))/color(green)(cancel((x-1))(x^2+x+1))#

#color(white)("XXX")=(1+1)/(1+1+1)#

#color(white)("XXX")=2/3#