If u_n = int (sin nx)/sinx dx, >= 2, prove that u_n = (2sin(n-1)x)/(n-1)+u_(n-2) Hence evaluate: int_0^(pi/2) (sin5x)/ sinx dx?

4 Answers
Apr 13, 2017

pi/2

Explanation:

Calling u_n = int sin(n x)/sinx dx we have

u_n-u_(n-2) = int(sin(n x)/sinx-sin((n-2) x)/sinx)dx = int 2 cos((n-1)x)dx=(2sin((n-1)x))/((n-1))

Here we used

sin(a+b)-sin(a-b)=2cos(a)sin(b)

with

a+b=nx and
a-b=(n-2)x

and now

u_5 = (2sin(4x))/4+u_3
u_3 = (2sin(2x))/2+u_1

so

u_5=[(2sin(4x))/4+ (2sin(2x))/2+x]_0^(pi/2) = pi/2

Apr 13, 2017

Proof is given in the Explanation.

int_0^(pi/2) sin(5x)/sinxdx=pi/2.

Explanation:

In what follows, n in {2,3,4,...}=NN-{1}.

u_n=intsin(nx)/sinxdx rArr u_(n-2)=int{sin(n-2)x}/sinxdx.

:. u_n-u_(n-2)=int[sin(nx)/sinx-{sin(n-2)x}/sinx]dx,

=int{sin(nx)-sin(nx-2x)}/sinxdx,

=int{2cos((nx+nx-2x)/2)*sin((nx-nx+2x)/2)}/sinx dx,

=2int{(cos(2nx-2x)/2)*sin(2x/2)}/sinx dx,

=2intcos((n-1)x)dx,

rArr u_n=(2sin(n-1)x)/(n-1)+u_(n-2)+C, nge2, ninNN...(star).

Hence, the Proof.

Using (star) with n=5, we have,

u_5=(2sin(4x))/4+u_3....(1)

u_3=(2sin(2x))/2+u_1....(2)

And, finally, without (star), u_1=intsinx/sinxdx=intdx=x...(3).

(1),(2),&(3) rArr u_5=1/2sin4x+sin2x+x+c.

:. int_0^(pi/2) sin(5x)/sinxdx=[u_5]_0^(pi/2]

=[1/2sin4x+sin2x+x]_0^(pi/2)

=[1/2sin2pi+sinpi+pi/2]-(0)

=pi/2.

Enjoy Maths.!

Apr 13, 2017

For the 2^(nd) Proof, refer to the Explanation.

Explanation:

Here is a Second Method to prove the Result for

n>=2, n in NN.

u_n=intsin(nx)/sinxdx.

Now, sin(nx)/sinx=1/sinx{sin((nx-2x)+2x)}

Knowing that, sin(A+B)=sinAcosB+cosAsinB, we get,

sin(nx)/sinx=1/sinx{sin(nx-2x)cos2x+cos(nx-2x)sin2x}

=1/sinx{(sin((n-2)x))(1-2sin^2x)+(cos((n-2)x))(2sinxcosx)}

=1/sinx{sin((n-2)x)-2sin^2xsin((n-2)x)+2sinxcosxcos((n-2)x)}

=sin((n-2)x)/sinx-2sinxsin((n-2)x)+2cosxcos((n-2)x)

=sin((n-2)x)/sinx+2{cosxcos((n-2)x)-sinxsin((n-2)x)}

=sin((n-2)x)/sinx+2{cos((n-2)x+x)}

:. sin(nx)/sinx=sin((n-2)x)/sinx+2cos((n-1)x).

rArr u_n=intsin(nx)/sinxdx=int{sin((n-2)x)/sinx+2cos((n-1)x)}dx

=intsin((n-2)x)/sinxdx+2intcos((n-1)x)dx.

"Hence, "u_n=u_(n-2)+(2sin((n-1)x))/(n-1)+C; n in NN, n>=2.

Rest of the Soln. is the same as in the First Method.

Enjoy Maths.!

Apr 14, 2017

pi/2.

Explanation:

Without the use of the given Recurrence Relation,

I=int_0^(pi/2)sin(5x)/sinxdx can be proved as shown below:

A Result :

int_0^af(x)dx=int_0^af(a-x)dx; a>0, f :[0,a] to RR" is cont."

We have, I=int_0^(pi/2)sin(5x)/sinx dx............(1).

Using the above Result,

I=int_0^(pi/2) sin(5(pi/2-x))/{sin(pi/2-x)}dx,

=int_0^(pi/2) sin(5pi/2-5x)/cosxdx,

:. I=int_0^(pi/2) cos(5x)/cosxdx.......................(2).

Adding (1) and(2), we get,

I+I=2I=int_0^(pi/2){sin(5x)/sinx+cos(5x)/cosx}dx,

=int_0^(pi/2){sin(5x)cosx+sinxcos(5x)}/(sinxcosx)dx, i.e.,

2I=2int_0^(pi/2){sin(5x+x)}/(2sinxcosx)dx,

:. I=int_0^(pi/2) sin(6x)/sin(2x)dx,

Since, sin6x=sin(3(2x))=3sin(2x)-4sin^3(2x)={3-4sin^2(2x)}sin(2x),

we get, I=int_0^(pi/2){3-4sin^2(2x)}dx,

=int_0^(pi/2) {3-2(1-cos4x)}dx,

=int_0^(pi/2)(1+2cos4x)dx,

=[x+2(sin(4x)/4)]_0^(pi/2),

=[x+1/2sin4x]_0^(pi/2),

={pi/2+1/2sin2pi}-{0+1/2sin0],

rArr I=pi/2.

Enjoy Maths.!