Question #f1f96

1 Answer
Apr 14, 2017

#2pi#

Explanation:

The two curves would intersect where #3cos theta = 1+cos theta#. This gives #2 cos theta =1#, or #cos theta= 1/2#. Hence
#theta= pi/3, -pi/3#. The figure showing the common area(shaded in black pen) is given below.
enter image source here

The area would be given by the integral #int_(-pi/3)^(pi/3) {(3cos theta)^2 - (1+cos theta)^2} d theta#

=#int_(-pi/3)^(pi/3) (8cos^2 theta -2cos theta -1)d theta#

=#int_(-pi/3)^(pi/3) (4+4 cos 2theta -2 cos theta-1)d theta#

=#[3 theta +2 sin 2 theta - 2 sin theta]_(-pi/3)^(pi/3)#

#=[3 pi/3 +2 sin ((2pi)/3) - 2 sin (pi/3)]-[-3pi/3-2sin ((2pi)/3) +2 sin (pi/3)]#

#= 2pi#