Knowing that #lim_(xrarr0)(1+x)^(1/x)=e#, we can see that this limit is in the indeterminate form #0/0#. This means we can use l'Hopitals rule to find the limit by taking the derivatives of the numerator and denominator separately.
#lim_(xrarr0)((1+x)^(1/x)-e)/x=lim_(xrarr0)(d/dx(1+x)^(1/x))/1#
Use logarithmic differentiation to find the derivative of #(1+x)^(1/x)#:
#y=(1+x)^(1/x)#
#ln(y)=1/xln(1+x)#
#1/y*dy/dx=-1/x^2ln(1+x)+1/(x(1+x))#
#dy/dx=(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)#
So the limit is:
#=lim_(xrarr0)(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)#
#=lim_(xrarr0)(1+x)^(1/x)((x-(1+x)ln(1+x))/(x^2(1+x)))#
We can move #lim_(xrarr0)(1+x)^(1/x)# out of the limit as #e#, but to work with the remaining portion of the limit we will use l'Hopital's again since we have #0/0#:
#=elim_(xrarr0)(d/dx(x-(1+x)ln(1+x)))/(d/dx(x^2+x^3))#
#=elim_(xrarr0)(1-ln(1+x)-(1+x)/(1+x))/(2x+3x^2)#
#=elim_(xrarr0)(-ln(1+x))/(2x+3x^2)#
Since we have #0/0#, use l'Hopital's again:
#=elim_(xrarr0)(-1/(1+x))/(2+6x)#
Which we finally can evaluate:
#=e((-1/1)/2)#
#=-e/2#