How do you multiply and simplify #\frac { 3p ^ { 4} } { 5q ^ { 5} ( r - 5) ^ { 3} } \cdot \frac { 4l q ^ { 2} ( r - 5) } { 21p ^ { 3} }#?

1 Answer
Apr 17, 2017

#(4pl)/(35q^3(r-5)^2)#

Explanation:

#(color(green)3p^color(red)4)/(5q^5(r-5)^3)*(4lq^2(r-5))/(color(green)21p^color(red)3)#

Subtract the smaller exponent of a base from both bases, because of the division, and simplify #3# and #21# by dividing them by #3#

#(cancel3p^(4-3))/(5q^5(r-5)^3)*(4lq^2(r-5))/(7cancel21cancel(p^(3-3)))#

Anything to the power of zero can be cancelled

#(r-5)# is the same as #(r-5)^1#

#=p/(5q^5(r-5)^color(red)3)*(4lq^2(r-5)^color(red)1)/7#

#=p/(5q^5(r-5)^(color(red)3-1))*(4lq^2cancel((r-5)^(color(red)1-1)))/7#

#=p/(5q^color(red)5(r-5)^2)*(4lq^color(red)2)/7#

#=p/(5q^(color(red)5-2)(r-5)^2)*(4lcancel(q^(color(red)2-2)))/7#

#=p/(5q^3(r-5)^2)*(4l)/7#

Now there is no other simplification, we will multiply these two expressions together

#=(p*4l)/(color(green)5q^3(r-5)^2*color(green)7)#

#=(4pl)/(35q^3(r-5)^2)#

After a final check, this is the most simplified form.