Question #d8ccb

1 Answer
Apr 17, 2017

#(e^arctanx(x-1))/(2sqrt(1+x^2))+C#

Explanation:

#I=int(xe^arctanx)/((1+x^2)sqrt(1+x^2))dx#

Let #t=arctanx#. This implies that #dt=1/(1+x^2)dx# and that #x=tant#.

#I=int(tant(e^t))/sqrt(1+tan^2t)dt#

Recall that #1+tan^2t=sec^2t#:

#I=inte^t tant/sectdt=inte^tsintdt#

This is a tricky integral which is solved with two iterations of integration by parts. Start with:

#{(u=e^t,=>,du=e^tdt),(dv=sintdt,=>,v=-cost):}#

#I=-e^tcost+inte^tcostdt#

Now let:

#{(u=e^t,=>,du=e^tdt),(dv=costdt,=>,v=sint):}#

So:

#I=-e^tcost+e^tsint-inte^tsintdt#

The original integral #I=inte^tsintdt# has reappeared so we can add it to both sides of the equation then isolate #I#:

#2I=e^tsint-e^tcost#

#I=1/2e^t(sint-cost)#

Substituting back in with #t=arctanx#:

#I=1/2e^arctanx(sin(arctanx)-cos(arctanx))#

Note that the angle #arctanx# occurs in a right triangle where the side opposite the angle is #x# and the side adjacent to the angle is #1#. Through the Pythagorean Theorem, its hypotenuse is #sqrt(1+x^2)#.

Then, #sin(arctanx)=x/sqrt(1+x^2)# and #cos(arctanx)=1/sqrt(1+x^2)#.

#I=1/2e^arctanx(x/sqrt(1+x^2)-1/sqrt(1+x^2))#

#I=(e^arctanx(x-1))/(2sqrt(1+x^2))+C#