I'm going to assume this needs to be simplified:
#1/(csctheta+1)-1/(csctheta-1)#
#1/(1/sintheta+1)-1/(1/sintheta-1)#
#1/(1/sintheta+sintheta/sintheta)-1/(1/sintheta-sintheta/sintheta)#
#1/((1+sintheta)/sintheta)-1/((1-sintheta)/sintheta)#
#sintheta/(1+sintheta)-sintheta/(1-sintheta)#
#sintheta/(1+sintheta)((1-sintheta)/(1-sintheta))-sintheta/(1-sintheta)((1+sintheta)/(1+sintheta))#
#(sintheta(1-sintheta))/((1+sintheta)(1-sintheta))-(sintheta(1+sintheta))/((1-sintheta)(1+sintheta))#
#(sintheta-sin^2theta)/((1+sintheta)(1-sintheta))-(sintheta+sin^2theta)/((1-sintheta)(1+sintheta))#
#(sintheta-sintheta-sin^2theta-sin^2theta)/((1+sintheta)(1-sintheta))#
#(-2sin^2theta)/((1-sin^2theta))#
Recall that #sin^2theta+cos^2theta=1=>1-sin^2theta=cos^2theta#
#(-2sin^2theta)/cos^2theta=-2tan^2theta#