What are the coordinates of the #x#-intercepts of the graph of #y=2x^2+6x-20#?

2 Answers
Apr 22, 2017

Intercepts are #(-5,0)# and #(2,0)#

Explanation:

For #x#-intercepts we have their ordinates as zero i.e. #y=0#. Hence we get #x#-intercepts by putting #y=0#.

So we have #2x^2+6x-20=0#

or #x^2+3x-10=0#

or #x^2+2xx3/2xx x+(3/2)^2-(3/2)^2-10=0#

or #(x+3/2)^2-9/4-10=0#

or #(x+3/2)^2-49/4=0#

or #(x+3/2)^2-(7/2)^2=0#

or #(x+3/2+7/2)(x+3/2-7/2)=0#

or #(x+5)(x-2)=0# i.e. #x=-5# or #x=2#

Hence, intercepts are #(-5,0)# and #(2,0)#

graph{2x^2+6x-20 [-10, 10, -30, 30]}

Apr 22, 2017

X-intercepts are -

#(2,0)#
#(-5, 0)#

Explanation:

Given -

#y=2x^2+6x-20#

enter image source here

To find the x-intercept, put #y = 0#

#2x^2+6x-20=0#

Solve for #x#

#2x^2+6x=20#

#2/2x^2+6/2x=20/2# [divide both sides by coefficient of #x^2#]
#x^2+3x=10#

#x^2+3x+9/4=10+9/4# [divide the coefficient of #x# by #2# and square it. Add the value to both sides]
#x^2+3x+9/4=(40+9)/4=49/4#

#(x+3/2)^2=49/4#
#x+3/2=+-7/2#

#x=7/2-3/2=4/2=2#

#(2,0)#

#x=-7/2-3/2=-10/2=-5#

#(-5, 0)#