How do you evaluate #\int \frac { 1} { ( 1+ x ^ { 2} ) \arctan ( x ) } d x#?
1 Answer
Apr 24, 2017
# int \ 1/((1+x^2)arctanx) \ dx = ln|arctan x| + c #
Explanation:
We want to find:
# I = int \ 1/((1+x^2)arctanx) \ dx #
We can perform a substitution: Let
# u = arctan x => (du)/dx = 1/(1+x^2) #
Applying the substitution to our integral gives:
# I = int \ 1/arctanx * 1/(1+x^2) \ dx #
# \ \ = int \ 1/u \ du #
# \ \ = ln|u| + c #
And restoring the substitution we get:
# I = ln|arctan x| + c #