How do you evaluate #\int \frac { 1} { ( 1+ x ^ { 2} ) \arctan ( x ) } d x#?

1 Answer
Apr 24, 2017

# int \ 1/((1+x^2)arctanx) \ dx = ln|arctan x| + c #

Explanation:

We want to find:

# I = int \ 1/((1+x^2)arctanx) \ dx #

We can perform a substitution: Let

# u = arctan x => (du)/dx = 1/(1+x^2) #

Applying the substitution to our integral gives:

# I = int \ 1/arctanx * 1/(1+x^2) \ dx #
# \ \ = int \ 1/u \ du #
# \ \ = ln|u| + c #

And restoring the substitution we get:

# I = ln|arctan x| + c #