How do you solve #(3x-1)^2=(2x+3)^2#?

1 Answer
Apr 26, 2017

#color(blue)(x=4#

Explanation:

#(3x-1)^2=(2x+3)^2#

square L.H.S. and R.H.S.

#:.sqrt((3x-1)^2)=sqrt((2x+3)^2)#

#:.sqrt((3x-1)(3x-1))=3x-1#

#:.sqrt((2x+3)(2x+3))=2x+3#

#:.3x-1=2x+3#

#:.3x-2x=3+1#

#:.color(blue)(x=4#

check:

substitute #color(blue)(x=4#

#:.(3(color(blue)4)-1)^2=(2(color(blue)4)+3)^2#

#:.11^2=11^2#