How do you solve the system of equations #y-3 = (x-1)^2# and #y-x=4# algebraically?

3 Answers
Apr 27, 2017

The Soln. Set #={(0,4),(3,7)}.#

Explanation:

#y-x=4 rArr y=x+4.#

Subst.ing, in, #y-3=(x-1)^2,# we have,

# x+4-3=(x-1)^2," i.e., "x+1=x^2-2x+1,# or,

# x^2-3x=0.#

#:. x(x-3)=0 rArr x=0, or, x=3.#

# y=x+4, &, x=0 rArr y=4, and, #

# y=x+4, &, x=3 rArr y=7.#

These roots satisfy the given eqns.

Hence, the Soln. Set #={(0,4),(3,7)}.#

Apr 27, 2017

#x=0# or #x=3# and #y=4# or #y=7#

Explanation:

You can rearrange the second equation to get just #y#
#y=x+4#
the you can rearrange the first equation to get all the unknown numbers on one side
#0=(x-1)^2-y+3#
then expand
#0=x^2-2x+4-y#

the second equation is equal to #y# therefore we can substitute this equation into the first equation everywhere where there is a #y#

#0=x^2-2x+4-(x+4)#
then solve
#0=x^2-2x+4-x-4#
#0=x^2-3x#
therefore #x=0# or #x=3#
substitute back into original equations to find y

#y=x+4#
#y=4# or #y=7#

Apr 27, 2017

#(0,4),(3,7)#

Explanation:

Simplify the first equation to #y=(x-1)^2+3=x^2-2x+4#
We can then plug this into the second equation to get
#x^2-2x+4-x=4#

Then simplify
#x^2-3x+4=4#
#x^2-3x=0#

Then use the quadratic formula to solve
#\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(0)}}{2(1)}#
#\frac{3\pm\sqrt{9-0}}{2}#
#\frac{3\pm3}{2}#

Solving we get
#\frac{3+3}{2}=6/2=3#
#\frac{3-3}{2}=0/2=0#