How to solve tan ϑ + 1 = 0 in the domain 0 ≤ ϑ ≤ 3600?

1 Answer
Apr 29, 2017

Values of #theta# in the interval #0 <= theta < 3600^@# are

#{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}#

Explanation:

As #tantheta+1=0#, we have

#tantheta=-1=tan((3pi)/4)=tan135^@#

As tangent has a cycle of #180^@#

#theta=180^@xxn+135^@#, where #n# is an integer

and values of #theta# in the interval #0 <= theta < 3600^@# are

#{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}#