What value of #a# will make #((12x^a)/(4x^5))^3 = 27x^12#?

2 Answers
Apr 30, 2017

To find #a# we have to perform #((12x^a)/(4x^5))^3# by applying some power properties then solve the given equation.
#" "#
#color(blue)(((12x^a)/(4x^5))^3#
#" #
#=(12x^a)^3/(4x^5)^3#
#" "#
#=(12^3xx(x^a)^3)/(4^3xx(x^5)^3#
#" "#
#=(1728xxx^(3a))/(64xxx^15)#
#" "#
#=1728/64xxx^(3a)/x^15#
#" "#
#color(blue)(=27xxx^(3a-15)#
#"#
Now let us solve the given equation:
#" "#
#((12x^a)/(4x^5))^3=27x^12#
#" "#
#rArrcolor(blue)(cancel27xxx^(3a-15))=cancel27x^12#
#" "#
#rArrx^(3a-15)=x^12#
#" "#
#rArr3a-15=12#
#" "#
#rArr3a=12+15#
#" "#
#rArr3a=27rArra=27/3#
#" "#
Therefore,#" "a=9#

Apr 30, 2017

#a=9#

Explanation:

#((12x^a)/(4x^5))^3 =27 x^12# Multiplying by #(4x^5)^3# in both sides

we get , #(12x^a)^3 =27*x^12 *64*x^15 # or

#12^3 x^(3a) = 27*64* x^27 or x^(3a)= 27*64*x^27/12^3#or

#x^(3a) = x^27 :. 3a =27 or a =9# [Ans]