If #(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) = a+sqrt(15)b# for integers #a# and #b# then what are #a# and #b# ?
2 Answers
Explanation:
Assumption: The question should be:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thus
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the RHS
The
Explanation:
To rational the denominator
#(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) = ((sqrt(5)+sqrt(3))(sqrt(5)+sqrt(3)))/((sqrt(5)-sqrt(3))(sqrt(5)+sqrt(3)))#
#color(white)((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) = ((sqrt(5))^2+2sqrt(5)sqrt(3)+(sqrt(3))^2)/((sqrt(5))^2-(sqrt(3))^2)#
#color(white)((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) = (5+2sqrt(15)+3)/(5-3)#
#color(white)((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) = (8+2sqrt(15))/2#
#color(white)((sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))) = 4+sqrt(15)#
So