How do you find the antiderivative of #sin(pix) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Mia May 1, 2017 #" "intsin(pix)dx=-1/picos(pix)+C# Explanation: Let #" "# #u=cos(pix)# #" "# #du=-pisin(pix)dx# #" "# #-(du)/pi=sin(pix)dx# #" "# #intsin(pix)dx=int-(du)/pi=-1/piintdu=-1/pi(u)+C# #" "# Therefore,#" "intsin(pix)dx=-1/picos(pix)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 10561 views around the world You can reuse this answer Creative Commons License