How do you solve #\lim _ { x \rightarrow 0} ( \frac { \tan 3x } { \sin 2x } ) #?

1 Answer
May 4, 2017

Because evaluation at the limit gives the indeterminate form #0/0#, one should use L'Hôpital's rule

Explanation:

#lim_(xrarr0) tan(3x)/sin(2x)#

Using L'Hôpital's rule :

#lim_(xrarr0) ((d(tan(3x)))/(dx))/((d(sin(2x)))/(dx))#

#lim_(xrarr0) (3sec^2(3x))/(2cos(2x))#

#lim_(xrarr0) 3/2sec^3(3x)= 3/2#

Therefore, so goes the original limit:

#lim_(xrarr0) tan(3x)/sin(2x) = 3/2#