How do you write the vertex form equation of the parabola # y = x^2 - 4x + 12#?

2 Answers
May 4, 2017

#y= (x-2)^2 +8#

Explanation:

#y = {x^2 - 2*2x +(2)^2} -(2)^2 +12 #
Changing it to # ( a^2 +2ab + b^2 )# form to convert it to #(a+b)^2#
#y = (x-2)^2 - 4 +12 #
#y= (x-2)^2 +8# is the vertex form.

May 4, 2017

#y-8=(x-2)^2#

Explanation:

#y=x^2-4x+12#

#=x^2-2xx2xx x+2^2-4+12#

#=(x-2)^2+8#

As in an equation of the vertex form #y-k=a(x-h)^2# or #y=(x-h)^2+k# the vertex is #(h,k)#

here we have vertex at #(2,8)# and vertex form of equation is #y-8=(x-2)^2#

graph{x^2-4x+12 [-8.24, 11.76, 6.08, 16.08]}