How do you evaluate #\sum _ { k = 1} ^ { 6} ( 4k - 4)#?

1 Answer
May 6, 2017

I got #60#

Explanation:

The terms of your Arithmetic Progression are:
#\sum_{k=1}^6(4k-4)=(4*1-4)+(4*2-4)+(4*3-4)+(4*4-4)+(4*5-4)+(4*6-4)=#
#=0+4+8+12+16+20#

Arithmetic Progression of #n=6# terms with ratio #r=4#.

The sum will be:

#S=n/2(a_1+a_2)#

Where:
#a_1=0# is the first term;
#a_n=a_6=20# is the last term.

We get: #S=6/2(0+20)=3*20=60#