How do you simplify #(x-3)^3#?
2 Answers
May 5, 2017
Explanation:
#"Given " (x+a)(x+b)(x+c)" then expansion is"#
#x^3+(a+b+c)x^2+(ab+bc+ac)x+abc#
#rArr(x-3)^3#
#=(x-3)(x-3)(x-3)#
#"with " a=b=c=-3#
#rArr(x-3)^3#
#=x^3+(-3-3-3)x^2+(9+9+9)x#
#color(white)(xx)+(-3)(-3)-3)#
#=x^3-9x^2+27x-27#
May 6, 2017
An alternate way to work it using binomial expansion
Explanation:
An alternate way to do this is to use Binomial Expansion, which uses the general formula of:
So here we have:
#a=x# #b=-3# #n=3#
and we add them up: