How do you differentiate #y=e^(x^5+3)#?
1 Answer
May 7, 2017
The derivative of
In other words:
#d/dxe^x=e^x#
#d/dxe^u=e^u(du)/dx#
Regardless, we see that
#y=e^(x^5+3)#
#dy/dx=e^(x^5+3)d/dx(x^5+3)#
#=5x^4e^(x^5+3)#