How do you find #\lim _ { x \rightarrow \infty } \frac { \sqrt { x ^ { 2} + x } } { 2x }#?

1 Answer
May 7, 2017

#1/2#

Explanation:

Factoring the greatest degree term from the numerator:

#lim_(xrarroo)sqrt(x^2+x)/(2x)=lim_(xrarroo)sqrt(x^2(1+1/x))/(2x)=lim_(xrarroo)(absxsqrt(1+1/x))/(2x)#

When #x>0#, as is the case as #xrarroo#, #absx=x#, so the limit becomes:

#=lim_(xrarroo)sqrt(1+1/x)/2#

As #xrarroo#, the denominator of #1/x# grows rapidly and #1/xrarr0#:

#=sqrt(1+0)/2=1/2#