How do you simplify #sqrt3(sqrt27-sqrt3)#?

1 Answer
May 8, 2017

See a solution process below:

Explanation:

First, rewrite this expression as:

#(sqrt(3) * sqrt(27)) - (sqrt(3) * sqrt(3))#

Next, use this rule for multiplying radicals to again rewrite the expression as:

#sqrt(a) * sqrt(b) = sqrt(a * b)#

#(sqrt(3) * sqrt(27)) - (sqrt(3) * sqrt(3)) = sqrt(3 * 27) - sqrt(3 * 3) =>#

#sqrt(81) - sqrt(9) => 9 - 3 => 6#