How do you multiply and simplify #\frac { 3x ^ { - 3} y ^ { 3} \cdot 2y ^ { 4} } { 3x y ^ { - 4} }#?

1 Answer
May 10, 2017

#(3x^(-3)y^(3)*2y^4)/(3xy^(-4))=color(blue)((2y^11)/(x^4)#

See the process in the explanation.

Explanation:

Simplify:

#(3x^(-3)y^(3)*2y^4)/(3xy^(-4))#

Remove the multiplication symbol in front of #2y^4#. If you put the exponents inside parentheses, you won't need the multiplication symbol.

#(3x^(-3)y^(3)2y^4)/(3xy^(-4))#

Gather like terms.

#(2*3x^(-3)y^(3)y^4)/(3xy^(-4))#

Simplify.

#(6x^(-3)y^3y^4)/(3xy^(-4))#

Simplify.

#(2x^(-3)y^3y^4)/(xy^(-4))#

Apply the negative exponent rule: #a^-n=1/a^n#.

#(2y^3y^4y^4)/(x^(1)x^3)#

Apply the product rule of exponents: #a^m*a^n=a^(m+n)#.

#(2y^(3+4+4))/(x^(1+3))#

Simplify.

#(2y^11)/(x^4)#