How do you find #\int _ { 0} ^ { 1} 3x ^ { 3} + 4x ^ { 2} + x - 2d x#?

1 Answer
May 11, 2017

#int_0^1 (3x^3+4x^2+x-2)dx=7/12#

Explanation:

As differential of #x^n# is #nx^(n-1)#, integral of #nx^(n-1)# is #x^n# and integral of #x^n# is #1/(n+1)x^(n+1)#.

Hence #int(3x^3+4x^2+x-2)dx#

= #3xxx^4/4+4xxx^3/3+x^2/2-2x+c#, where #c# is constant

= #(3x^4)/4+(4x^3)/3+x^2/2-2x+c#

and #int_0^1 (3x^3+4x^2+x-2)dx#

= #[(3x^4)/4+(4x^3)/3+x^2/2-2x+c]_0^1#

= #[(3xx1^4)/4+(4xx1^3)/3+(1xx1^2)/2-2xx1+c]-[(3xx0^4)/4+(4xx0^3)/3+(1xx0^2)/2-2xx0+c]#

= #3/4+4/3+1/2-2+c-0-0-0+0-c#

= #(9+16+6-24)/12#

= #7/12#