If #x+1/x = sqrt(3)# then what is #x^9+x^2+2# ?
1 Answer
Explanation:
If
If
So there are no real values of
#x+1/x = sqrt(3) ~~ 1.732#
We can find complex solutions, by first multiplying through by
#x^2+1 = sqrt(3)x#
Subtract
#x^2-sqrt(3)x+1 = 0#
This has roots given by the quadratic formula:
#x = (sqrt(3)+-sqrt((sqrt(3))^2-4(1)(1)))/(2(1))#
#color(white)(x) = (sqrt(3)+-sqrt(3-4))/2#
#color(white)(x) = sqrt(3)/2+-1/2i#
#color(white)(x) = cos(pi/6)+-isin(pi/6)#
If
#x^9+x^2+2 = cos((3pi)/2)+isin((3pi)/2)+cos(pi/3)+isin(pi/3)+2#
If
#x^9+x^2+2 = cos((3pi)/2)-isin((3pi)/2)+cos(pi/3)-isin(pi/3)+2#