How do you simplify #(\frac { x ^ { 2} } { x ^ { 6} } ) ^ { - \frac { 1} { 2} }#?

1 Answer
May 14, 2017

#x^2#

Explanation:

Distribute the #-1/2# exponent to each term:

#(x^(2*-1/2))/(x^(6*-1/2))=x^(-1)/x^(-3)#

Rewrite using positive exponents:

#x^3/x#
Note: this is because of negative exponent rule: #x^(-a)=1/x^a# so essentially, #x^(-1)/x^(-3)=(1/x^1)/(1/x^3)=1/x^1*x^3/1=x^3/x^1 or x^3/x#, Also note that #x^1# is the same as #x#

Finally, simplify:
#x^2#

Note: We get this result because of the quotient rule of exponents: #x^a/x^b=x^(a-b)# so essentially, #x^3/x=x^(3-1)=x^2#