How do you find the lengths of the curve #y=int (sqrtt+1)^-2# from #[0,x^2]# for the interval #0<=x<=1#?
1 Answer
May 15, 2017
The arc length of the curve
#L=int_a^bsqrt(1+(dy/dx)^2)dx#
Here, to find
#y=int_0^(x^2)(sqrtt+1)^-2dt#
#dy/dx=(sqrt(x^2)+1)^-2d/dx(x^2)=(x+1)^-2(2x)#
#(dy/dx)^2=(4x^2)/(x+1)^4#
So the arc length is given by:
#L=int_0^1sqrt(1+(4x^2)/(x+1)^4)dx#
Putting this into a calculator or Wolfram Alpha:
#L=1.07943#