How do you divide #\frac { r ^ { 2} - 3r - 18} { 3r ^ { 2} - 18r } \div \frac { r + 9} { r ^ { 2} + 12r + 27}#?

2 Answers
May 15, 2017

First get the reciprocal of #(r+9)/(r^2+12r+27)# and then multiply it to #(r^2 - 3r - 18)/(3r^2- 18r)#

Like so...

#(r^2 - 3r - 18)/(3r^2- 18r)# * #(r^2+12r+27)/(r+9)#

Factor out each of the components to make solving easier

#((r+3)(r-6))/(3r(r-6))# * #((r+3)(r+9))/((r+9))#

Simplify

#((r+3)cancel(r-6))/((3r)cancel(r-6))# * #((r+3)cancel(r+9))/(cancel(r+9)#

Simplify once more to get the final answer

#(r+3)^2/(3r)#

May 15, 2017

#=1/3+2/r+3/r^2#

Explanation:

(1) Use the rule of dividing fractions .

That is invert second fraction and change the problem to multiplication

#\frac { r ^ { 2} - 3r - 18} { 3r ^ { 2} - 18r } \div \frac { r + 9} { r ^ { 2} + 12r + 27}#?

#(r^2-3r-18)/(3r^2-18r)xx(r^2+12r+27)/(r+9)#

2) Factorise fully as possible

#((r-6)(r+3))/(3r(r-6))xx((r+3)(r+9))/(r+9)#

(3) Cancel down

#(cancel((r-6))(r+3))/(3rcancel((r-6)))xx((r+3)cancel((r+9)))/cancel((r+9))#

(4) Tidy up

#((r+3)^2)/(3r)#

#=(r^2+6r+9)/(3r^2)#

#=1/3+2/r+3/r^2#