How can i solve this sin,cos,tan Mathematical equation? #sin(cos^-1(63/65)+2tan^-1(3/4))# Help me guys...
#sin(cos^-1(63/65)+2tan^-1(3/4))#
2 Answers
0.999
Explanation:
The easiest way is to use calculator:
sin (88^@) = 0.999
Remind:
Explanation:
Remember the compound-angle identities
Then,
Now,
#cos(arccos(63/65))=63/65# , and, since#sin^2(x)+cos^2(x)=1# ,#sin(arccos(63/65))=sqrt(1-cos^2(arccos(63/65)))=16/65# .
Thus, the above equals
Apply the compound-angle identities again:
Now, since
#tan^2(x)+1=1/cos^2(x)# and#1+1/tan^2(x)=1/sin^2(x)# ,#cos(arctan(x))=sqrt(1/(tan^2(arctan(x))+1))=1/sqrt(x^2+1)# and#sin(arctan(x))=sqrt(1/(1+1/tan^2(arctan(x))))=sqrt(1/(1+1/x^2))=x/sqrt(x^2+1)# .
Thus, the above becomes
Simplify to get