#cos48cos12# is similar to the sum-to-product formula for
#cos"P"+cos"Q"=2cos(("P"+"Q")/2)cos(("P"-"Q")/2)#
#"P"+"Q"=96#
#"P"-"Q"=24#
#2"P"=120#
#"P"=60#
#2"Q"=72#
#"Q"=36#
#cos48cos12=1/2(cos60+cos36)#
#=1/2(1/2+cos36)#
#cos36=cos2(18)=2cos^2 18-1#
How to find sin18
From the above video, we know #sin18=(-1+sqrt5)/4#
#cos^2 18=1-sin^2 18=1-((-1+sqrt5)/4) ^2=(5+sqrt5)/8#
#cos36=2cos^2 18-1=2((5+sqrt5)/8)^2-1=(1+sqrt5)/4#
#1/2(1/2+cos36)#
#=1/2(1/2+(1+sqrt5)/4)#
#=1/2((3+sqrt5)/4)#
#=(3+sqrt5)/8#
#thereforecos48cos12=(3+sqrt5)/8# #sf(QED"/"OEDelta)#