How do you multiply #(3b + 4) ( - b ^ { 2} + 3b - 4)#?

2 Answers
May 17, 2017

Distribute the #3b# among the #(-b^2+3b-4)#

To get

#-3b^3+9b^2-12b#

Then distribute the #+4# among the #(-b^2+3b-4)#

To get

#-4b^2+12b-16#

Then combine the two equations you formed like so:

#-3b^3+9b^2-12b-4b^2+12b-16#

Simplify to get the answer:

#-3b^3+5b^2-16#

May 17, 2017

#-3b^3+5b^2-16#

Explanation:

Each term in the second bracket is multiplied by each term in the first bracket as shown below.

#(color(red)(3b+4))(-b^2+3b-4)#

#=color(red)(3b)(-b^2+3b-4)color(red)(+4)(-b^2+3b-4)#

#=(color(red)(3b)xx-b^2)+(color(red)(3b)xx3b)+(color(red)(3b)xx-4)#
#color(white)(=)+(color(red)(4)xx-b^2)+(color(red)(4)xx3b)+(color(red)(4)xx-4)#

#=-3b^3+9b^2cancel(-12b)-4b^2cancel(+12b)-16#

#=-3b^3+5b^2-16#