How do you solve #\frac { e } { e + 5} + \frac { 5} { e - 5} = \frac { 2e + 24} { e ^ { 2} - 25}#?

2 Answers
May 17, 2017

#e=1#

Explanation:

difference of two squares identity:

#(a+b)(a-b) = a^2-b^2#

using this:

#(e+5)(e-5) = e^2-25#

this can be used as a common denominator:

#e/(e+5) = (e(e-5))/((e+5)(e-5)#

#=(e(e-5))/(e^2-25)#

#5/(e-5) = (5(e+5))/(e^2-25)#

#=(e(e-5))/(e^2-25)+ (5(e+5))/(e^2-25) = (2e+24)/(e^2-25)#

multiply everything by #e^2-25#:

#e(e-5)+5(e+5)=2e+24#

expand brackets:

#e^2cancel(-5e)cancel(+5e)+25 = 2e+24#

#e^2+25 = 2e+24#

subtract #24#:

#e^2+1=2e#

subtract #2e#:

#e^2-2e+1 = 0#

#-1 + -1 = -2#
#-1 * -1 = 1#

#(e-1)^2 = 0#

#e=1#

graphical proof:

graph{(x-1)^2 [-0.434, 2.233, -0.479, 0.855]}

equation of graph: #y=(x-1)^2#

vertex of graph: #(1,0)#
#(x=1, y=0)#

substitute #x# with #e#
#e=1#

May 17, 2017

#e=1#

Explanation:

In equations with fractions, you can get rid of the denominators right at the beginning by multiplying each term by the LCD.

Factorise the denominators if possible.

#e/((e+5))+5/((e-5)) = (2e+24)/((e+5)(e-5)#

#LCD = color(blue)((e+5)(e-5))#

Look at the left hand side first:
#(color(blue)(cancel((e+5))(e-5)))/cancel((e+5))+(5color(blue)((e+5)cancel((e-5))))/(cancel((e-5)))#

Look at the right hand side

#= ((2e+24)color(blue)cancel((e+5)(e-5)))/cancel((e+5)(e-5)##

After cancelling the denominators we have:

#e-5 +5(e+5) = 2e+24#

#e-5 +5e+25 = 2e+24#

#6e-2e= 24+5-25#

#4e = 4#

#e=1#