How do you differentiate #y=(5/2)^cosx#?

1 Answer
May 19, 2017

#y' = - (frac(5)(2))^(cos(x)) ln(frac(5)(2)) sin(x)#

Explanation:

We have: #y = (frac(5)(2))^(cos(x))#

This function can be differentiated using the "chain rule".

Let #u = cos(x)# and #v = (frac(5)(2))^(u)#:

#Rightarrow y' = u' cdot v'#

#Rightarrow y' = - sin(x) cdot (frac(5)(2))^(cos(x)) cdot ln(frac(5)(2))#

#Rightarrow y' = - (frac(5)(2))^(cos(x)) ln(frac(5)(2)) sin(x)#