How do you find the coordinates of the other endpoint of a segment with the given endpoint T(-3.5,-6) and the midpoint M(1.5,4.5)?

1 Answer
May 20, 2017

See a solution process below:

Explanation:

The formula to find the mid-point of a line segment give the two end points is:

#M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)#

Where #M# is the midpoint and the given points are:

#(color(red)((x_1, y_1)))# and #(color(blue)((x_2, y_2)))#

Substituting the information we have gives:

#(1.5, 4.5) = ((color(red)(-3.5) + color(blue)(x_2))/2 , (color(red)(-6) + color(blue)(y_2))/2)#

To find #color(blue)(x_2)# we need to solve this equation:

#1.5 = (color(red)(-3.5) + color(blue)(x_2))/2#

#color(green)(2) xx 1.5 = color(green)(2) xx (color(red)(-3.5) + color(blue)(x_2))/2#

#3 = cancel(color(green)(2)) xx (color(red)(-3.5) + color(blue)(x_2))/color(green)(cancel(color(black)(2)))#

#3 = color(red)(-3.5) + color(blue)(x_2)#

#3.5 + 3 = 3.5 color(red)(- 3.5) + color(blue)(x_2)#

#6.5 = 0 + color(blue)(x_2)#

#6.5 = color(blue)(x_2)#

#color(blue)(x_2) = 6.5#

To find #color(blue)(y_2)# we need to solve this equation:

#4.5 = (color(red)(-6) + color(blue)(y_2))/2#

#color(green)(2) xx 4.5 = color(green)(2) xx (color(red)(-6) + color(blue)(y_2))/2#

#9 = cancel(color(green)(2)) xx (color(red)(-6) + color(blue)(y_2))/color(green)(cancel(color(black)(2)))#

#9 = color(red)(-6) + color(blue)(y_2)#

#9 + 6 = 6 color(red)(- 6) + color(blue)(y_2)#

#15 = 0 + color(blue)(y_2)#

#15 = color(blue)(y_2)#

#color(blue)(y_2) = 15#

The other end point of the segment is: #(color(blue)(6.5), color(blue)(15))#