The formula to find the mid-point of a line segment give the two end points is:
#M = ((color(red)(x_1) + color(blue)(x_2))/2 , (color(red)(y_1) + color(blue)(y_2))/2)#
Where #M# is the midpoint and the given points are:
#(color(red)((x_1, y_1)))# and #(color(blue)((x_2, y_2)))#
Substituting the information we have gives:
#(1.5, 4.5) = ((color(red)(-3.5) + color(blue)(x_2))/2 , (color(red)(-6) + color(blue)(y_2))/2)#
To find #color(blue)(x_2)# we need to solve this equation:
#1.5 = (color(red)(-3.5) + color(blue)(x_2))/2#
#color(green)(2) xx 1.5 = color(green)(2) xx (color(red)(-3.5) + color(blue)(x_2))/2#
#3 = cancel(color(green)(2)) xx (color(red)(-3.5) + color(blue)(x_2))/color(green)(cancel(color(black)(2)))#
#3 = color(red)(-3.5) + color(blue)(x_2)#
#3.5 + 3 = 3.5 color(red)(- 3.5) + color(blue)(x_2)#
#6.5 = 0 + color(blue)(x_2)#
#6.5 = color(blue)(x_2)#
#color(blue)(x_2) = 6.5#
To find #color(blue)(y_2)# we need to solve this equation:
#4.5 = (color(red)(-6) + color(blue)(y_2))/2#
#color(green)(2) xx 4.5 = color(green)(2) xx (color(red)(-6) + color(blue)(y_2))/2#
#9 = cancel(color(green)(2)) xx (color(red)(-6) + color(blue)(y_2))/color(green)(cancel(color(black)(2)))#
#9 = color(red)(-6) + color(blue)(y_2)#
#9 + 6 = 6 color(red)(- 6) + color(blue)(y_2)#
#15 = 0 + color(blue)(y_2)#
#15 = color(blue)(y_2)#
#color(blue)(y_2) = 15#
The other end point of the segment is: #(color(blue)(6.5), color(blue)(15))#