What are the first three terms of the binomial expansion of #(x+2y)^17# ?

1 Answer
May 21, 2017

#(x+2y)^17 = x^17+34x^16y+544x^15y^2+...#

Explanation:

The Binomial Theorem tells us that:

#(a+b)^n = sum_(k=0)^n ((n),(k)) a^(n-k)b^k#

where #((n),(k)) = (n!)/((n-k)!k!)#

In our example, #n=17#, #a=x#, #b=2y#, so we find:

#(x+2y)^17 = sum_(k=0)^17 ((17),(k)) x^(17-k) (2y)^k#

#color(white)((x+2y)^17) = ((17),(0))x^17+((17),(1))x^16(2y)+((17),(2))x^15(2y)^2+...#

#color(white)((x+2y)^17) = (1)x^17+(17)x^16(2)y+((17*16)/2)x^15(4)y^2+...#

#color(white)((x+2y)^17) = x^17+34x^16y+544x^15y^2+...#