What is the derivative of #y=tan(ln(2x+1))#?

1 Answer
May 22, 2017

# dy/dx = (2sec^2(ln(2x+1)))/(2x+1) #

Explanation:

Using the standard results:

# d/dx(tanx)=sec^2x # and #d/dxlnx=1/x#

Along with the chain rule then differentiating:

# y = tan(ln(2x+1)) #

gives:

# dy/dx = sec^2(ln(2x+1)) * d/dx ln(2x+1) #
# \ \ \ \ \ = sec^2(ln(2x+1)) * 1/(2x+1) * d/dx(2x+1) #
# \ \ \ \ \ = sec^2(ln(2x+1)) * 1/(2x+1) * 2 #
# \ \ \ \ \ = (2sec^2(ln(2x+1)))/(2x+1) #