How do you integrate #(x^(n+1))/(n+1)?#

I know how to integrate #x^n#, but I don't understand how to integrate the result.

1 Answer
May 22, 2017

# int \ x^(n+1)/(n+1) \ dx = x^(n+2)/((n+1)(n+2)) + C #

Explanation:

We use the standard result:

# int \ x^n \ dx = x^(n+1)/(n+1) + C#

Or to avoid confusion, let us write it as:

# int \ x^m \ dx = x^(m+1)/(m+1) + C#

So with #m=n+1# we have:

# int \ x^(n+1)/(n+1) \ dx = 1/(n+1) int \ x^(n+1) \ dx #
# " " = 1/(n+1) int \ x^m \ dx #
# " " = 1/(n+1) x^(m+1)/(m+1) + C #
# " " = 1/(n+1) x^(n+1+1)/(n+1+1) + C #
# " " = 1/(n+1) x^(n+2)/(n+2) + C #
# " " = x^(n+2)/((n+1)(n+2)) + C #