How do you simplify #\sqrt { 12x ^ { 4} y ^ { 2} z ^ { 2} }#?

1 Answer
May 22, 2017

#sqrt(12x^(4)y^(2)z^(2))=color(blue)(2sqrt3x^2yz#

For the process refer to the explanation.

Explanation:

Simplify:

#sqrt(12x^(4)y^(2)z^(2))#

Apply the square root rule: #sqrt(ab)=sqrtasqrtb#.

#sqrt(12)sqrt(x^4)sqrt(y^2)sqrt(z^2)#

Determine #sqrt(12)# by prime factorization.

#sqrt(color(red)(2xx2)xxcolor(blue)3)sqrt(x^4)sqrt(y^2)sqrt(z^2)#

#color(red)2sqrtcolor(blue)3sqrt(x^4)sqrt(y^2)sqrt(z^2)#

Simplify #sqrt(x^4)# to #x^2#.

#color(red)2sqrtcolor(blue)3color(green)(x^2)sqrt(y^2)sqrt(z^2)#

Simplify #sqrt(y^2)# to #y#.

#color(red)2sqrtcolor(blue)3color(green)(x^2)color(purple)ysqrt(z^2)#

Simplify #sqrt(z^2)# to #z#.

#color(red)2sqrtcolor(blue)3color(green)(x^2)color(purple)ycolor(magenta)z#