Question #6927d

2 Answers
May 23, 2017

#frac(d)(dx)(cos(4 x)) = - 4 sin(4 x)#

Explanation:

We have: #cos(4 x)#

This expression can be differentiated using the "chain rule".

Let #u = 4 x Rightarrow u' = 4# and #v = cos(u) Rightarrow v' = - sin(u)#:

#Rightarrow frac(d)(dx)(cos(4 x)) = u' cdot v'#

#Rightarrow frac(d)(dx)(cos(4 x)) = 4 cdot (- sin(u))#

#Rightarrow frac(d)(dx)(cos(4 x)) = - 4 sin(u)#

Then, let's replace #u# with #4 x#:

#Rightarrow frac(d)(dx)(cos(4 x)) = - 4 sin(4 x)#

May 23, 2017

#-4sin(4x)#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#• d/dx(f(g(x)))=f'(g(x))xxg'(x)#

#rArrd/dx(cos(4x))=-sin(4x)xxd/dx(4x)#

#color(white)(xxxxxxxxxxx)=-4sin(4x)#