What is the domain and range of #f(x)=1-x^2#?

1 Answer
May 24, 2017

Domain : #x| RR#. In interval notation: #(-oo, oo)#
Range: #f(x) <=1#. In interval notation: #(-oo, 1]#

Explanation:

#f(x) = 1-x^2 or f(x) = -x^2 +1 or f(x) = -(x-0)^2+1 #

This is a quadratic equation , i.e parabola openning downwards ,

with vertex at #0,1 # , Maximum point , #f(x)=1#

Domain : #x# may be any real number i.e #x| RR#. In interval notation #(-oo, oo)#

Range: #f(x) <=1#. In interval notation #(-oo, 1]# graph{-x^2+1 [-10, 10, -5, 5]} [Ans]