What is #(3xyz^2)/(6y^4)# by #(2y)/(xz^4)#?

1 Answer
May 26, 2017

#(3xyz^2)/(6y^4)*(2y)/(xz^4)=color(blue)(1/(y^2z^2)#

This answer came from multiplying the two expressions.

Explanation:

Simplify.

#(3xyz^2)/(6y^4)*(2y)/(xz^4)#

Combine both expressions.

#(3xyz^(2)2y)/(6y^4xz^4)#

Gather like terms.

#(3*2*x*y*y*z^(2))/(6*x*y^(4)z^(4))#

Cancel #6# and #x#.

#(color(red)cancel(color(black)(6))color(red)cancel(color(black)(x))y^(2)z^(2))/(color(red)cancel(color(black)(6))color(red)cancel(color(black)(x))y^(4)z^(4))#

#(y^(2)z^(2))/(y^(4)z^(4))#

Apply quotient exponent rule: #a^m/a^n=a^(m-n)#.

#(y^(2-4)z^(2-4))#

Simplify.

#y^(-2)z^(-2)#

Apply negative exponent rule: #a^(-m)=1/a^m#.

#1/(y^2z^2)#