How do you simplify #(-5sqrt6)(2sqrt3)#?

2 Answers
May 24, 2017

#(-5sqrt6)(2sqrt3)=-30sqrt2#

Explanation:

#(-5sqrt6)(2sqrt3)#

= #(-5)xxsqrt6xx2xxsqrt3#

= #-(5xx2xxsqrt6xxsqrt3)#

= #-(10xxsqrt(6xx3))#

= #-(10xxsqrt(2xxul(3xx3)))#

= #-10xx3xxsqrt2#

= #-30sqrt2#

May 26, 2017

#-30sqrt2#

Explanation:

This is all one term made of factors multiplied together.

#color(white)(.........)-5 xxcolor(blue)(sqrt6) xx2xxsqrt3#
#color(white)(......................)darr#
#=-5 xxcolor(blue)(sqrt2xxsqrt3)xx2xxsqrt3" "larr# now re-arrange

#= color(green)(-5 xx2) xxcolor(red)(sqrt3 xxsqrt3) xxsqrt2#

#= color(green)(-10) xxcolor(red)(3) xxsqrt2#

#=-30sqrt2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Remember that:

#color(red)(sqrt3 xxsqrt3 = color(red)(sqrt3)^2 = 3)#