Start with:
#(6x+5)/(x+2)^4 = A/(x+2)^4 + B/(x+2)^3+C/(x+2)^2+D/(x+2)#
Multiply both sides by #(x+2)^4#:
#6x+5 = A + B(x+2)+C(x+2)^2+D(x+2)^3#
Let x = -2
#6(-2)+5 = A#
#A = -7#
Add 7 to both sides of equation:
#6x+12 = B(x+2)+C(x+2)^2+D(x+2)^3#
Let x = 0:
#[
(2,4,8,|,12),
]#
Let x = -1
#[
(2,4,8,|,12),
(1,1,1,|,6)
]#
Let x = 1
#[
(2,4,8,|,12),
(1,1,1,|,6),
(3,9,27,|,18)
]#
#R_1harrR_2#
#[
(1,1,1,|,6),
(2,4,8,|,12),
(3,9,27,|,18)
]#
#R_2-2R_1toR_2#
#[
(1,1,1,|,6),
(0,2,6,|,0),
(3,9,27,|,18)
]#
#R_3-3R_1toR_3#
#[
(1,1,1,|,6),
(0,2,6,|,0),
(0,6,24,|,0)
]#
#R_2/2toR_2#
#[
(1,1,1,|,6),
(0,1,3,|,0),
(0,6,24,|,0)
]#
#R_3/6toR_3#
#[
(1,1,1,|,6),
(0,1,3,|,0),
(0,1,4,|,0)
]#
#R_3-R_3toR_3#
#[
(1,1,1,|,6),
(0,1,3,|,0),
(0,0,1,|,0)
]#
It is obvious that C and D are 0 so we can clear the matrix:
#[
(1,0,0,|,6),
(0,1,0,|,0),
(0,0,1,|,0)
]#
#B = 6 and C = D = 0#
#(6x+5)/(x+2)^4 = -7/(x+2)^4 + 6/(x+2)^3#