How do you long divide # (x^3-13x -12)/ (x-4)#?
2 Answers
The quotient is
Explanation:
Let's perform the long division
Therefore,
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(x^2)(x-4)color(magenta)(+4x^2)-13x-12#
#=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(magenta)(+16x)-13x-12#
#=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(red)(+3)(x-4)color(magenta)(+12)-12#
#=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(red)(+3)(x-4)#
#"quotient "=color(red)(x^2+4x+3)," remainder "=0#
#rArr(x^3-13x-12)/(x-4)=x^2+4x+3#