How do I find the derivative of #y=tanx^secx + secx^cotx#?

1 Answer
May 31, 2017

#dy/dx = (secxtanxlntanx+sec^2cscx)tanx^secx + (1-csc^2xlnsecx)secx^cotx#

Explanation:

Let # y= tanx^secx + secx^cotx#

Let #u=tanx^secx# and #v=secx^cotx#

#lnu = secxlntanx#

#1/u# #(u')= secxtanxlntanx + sec^2xcscx#

#u' = u(secxtanxlntanx + sec^2xcscx) = (secxtanxlntanx+sec^2xcscx)tanx^secx#

#lnv = cotlnsecx#

#1/v# #(v') = -csc^2xlnsecx + 1#

#v'= v(1-csc^2xlnsecx) =(1-csc^2xlnsecx)secx^cotx#

#dy/dx = (secxtanxlntanx+sec^2xcscx)tanx^secx + (1-csc^2xlnsecx)secx^cotx#