How do you multiply #36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}#?

1 Answer
May 31, 2017

#36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}=-108x^{6}y^{12}#
You multiply each thing with the same thing... Let me explain...

Explanation:

Because there is only multiplications:
#36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}= 36*x ^ { 4} *y ^ { 10} \cdot - 3*x ^ { 2}* y ^ { 2}#

You can rewrite how ever you want the equation. For this case you want to do this:
#36*x ^ { 4} *y ^ { 10} \cdot - 3*x ^ { 2}* y ^ { 2} = (36*-3)(x^{4}*x^{2})(y^{10}*y^{2})#

Now you can multiply each parenthesis:
#(36*-3)(x^{4}*x^{2})(y^{10}*y^{2})= -108x^{6}y^{12}#

Done!