How to find formula for the nth derivative of #f(x)=x/((x-a)(x-b))#?

1 Answer
Jun 2, 2017

#d^n/(dx^n)(x/((x-a)(x-b))) = (-1)^n (n!)((a/(a-b))1/(x-a)^(n+1)-(b/(a-b))1/(x-b)^(n+1))#

Explanation:

Expanding

#x/((x-a)(x-b))=(a/(a-b))1/(x-a)-(b/(a-b))1/(x-b)#

now

#d^n/(dx^n)(1/(x-a))=((-1)^n n!)/(x-a)^(n+1)# so

#d^n/(dx^n)(x/((x-a)(x-b))) = (-1)^n (n!)((a/(a-b))1/(x-a)^(n+1)-(b/(a-b))1/(x-b)^(n+1))#